OUR PROPOSAL: enhancing an already operative super CDR+SRM mechanism which is in use by Gaia after volcanic eruptions and during dusty glacial ages: the Iron Salts Aerosol Method

Renaud de Richter (1), Tingzheng Ming (2), Franz Dietrich Oeste (3)

It consists in adding iron (for instance ferrocene) offshore in marine bunker C fuels to be ejected by the smoke stack of container ships, or burning separately fuel iron mixtures with halogen (like HCl) mixed on buoyant flue gases, into the oceanic or the continental troposphere, far from populated areas...

The aerosols formed will have a cooling effect like the Marine Cloud Brightening method proposed by Latham & Salter (2, 3). Neighboring the photolyzed Fe(III), in such aerosol particle Cl is transformed in the troposphere to gaseous atomic Cl, which will destroy methane (the 2nd GHG in importance) by HCl generation. The Cl atom is regenerated from HCl by Fe(III) photolysis. The Cl will react with water to form HCl which will destroy methane (the 2nd GHG in importance) by HCl generation. The Cl atom is regenerated from HCl by Fe(III) photolysis. The Cl will react with water to form HCl which again photolysis to generate Cl atom. The Cl atom is regenerated from HCl by Fe(III) photolysis. The Cl will react with water to form HCl which will destroy methane (the 2nd GHG in importance) by HCl generation. The Cl atom is regenerated from HCl by Fe(III) photolysis. The Cl will react with water to form HCl which again photolysis to generate Cl atom.

Some marine Br and I will also destroy tropospheric ozone (the 3rd GHG in importance) (Shertenlin) after activation by Fe(III) photolysis (the same way as Cl).

The iron aerosols stay between days and weeks within the marine boundary layer where they are dispersed and diluted before falling into the ocean or onto the vegetation, where they will have a CDR cooling effect like the Ocean Iron Fertilization (OIF) method proposed by Martin (1990) which consists in moderate but far spread phytoplankton blooms before falling into the ocean or onto the vegetation, where they will have a CDR cooling effect like the Ocean Iron Fertilization (OIF) method proposed by Martin (1990) which consists in moderate but far spread phytoplankton blooms before falling into the ocean or onto the vegetation, where they will have a CDR cooling effect like the Ocean Iron Fertilization (OIF) method proposed by Martin (1990) which consists in moderate but far spread phytoplankton blooms before falling into the ocean or onto the vegetation, where they will have a CDR cooling effect like the Ocean Iron Fertilization (OIF) method proposed by Martin (1990) which consists in moderate but far spread phytoplankton blooms before falling into the ocean or onto the vegetation, where they will have a CDR cooling effect like the Ocean Iron Fertilization (OIF) method proposed by Martin (1990) which consists in moderate but far spread phytoplankton blooms before falling into the ocean or onto the vegetation, where they will have a CDR cooling effect like the Ocean Iron Fertilization (OIF) method proposed by Martin (1990) which consists in moderate but far spread phytoplankton blooms before falling into the ocean or onto the vegetation, where they will have a CDR cooling effect like the Ocean Iron Fertilization (OIF) method proposed by Martin (1990) which consists in moderate but far spread phytoplankton blooms before falling into the ocean or onto the vegetation, where they will have a CDR cooling effect like the Ocean Iron Fertilization (OIF) method proposed by Martin (1990) which consists in moderate but far spread phytoplankton blooms before falling into the ocean or onto the vegetation, where they will have a CDR cooling effect like the Ocean Iron Fertilization (OIF) method proposed by Martin (1990) which consists in moderate but far spread phytoplankton blooms before falling into the ocean or onto the vegetation, where they will have a CDR cooling effect like the Ocean Iron Fertilization (OIF) method proposed by Martin (1990) which consists in moderate but far spread phytoplankton blooms before falling into the ocean or onto the vegetation, where they will have a CDR cooling effect like the Ocean Iron Fertilization (OIF) method proposed by Martin (1990) which consists in moderate but far spread phytoplankton blooms before falling into the ocean or onto the vegetation, where they will have a CDR cooling effect like the Ocean Iron Fertilization (OIF) method proposed by Martin (1990) which consists in moderate but far spread phytoplankton blooms before falling into the ocean or onto the vegetation, where they will have a CDR cooling effect like the Ocean Iron Fertilization (OIF) method proposed by Martin (1990) which consists in moderate but far spread phytoplankton blooms before falling into the ocean or onto the vegetation, where they will have a CDR cooling effect like the Ocean Iron Fertilization (OIF) method proposed by Martin (1990) which consists in moderate but far spread phytoplankton blooms before falling into the ocean or onto the vegetation, where they will have a CDR cooling effect like the Ocean Iron Fertilization (OIF) method proposed by Martin (1990) which consists in moderate but far spread phytoplankton blooms before falling into the ocean or onto the vegetation, where they will have a CDR cooling effect like the Ocean Iron Fertilization (OIF) method proposed by Martin (1990) which consists in moderate but far spread phytoplankton blooms before falling into the ocean or onto the vegetation, where they will have a CDR cooling effect like the Ocean Iron Fertilization (OIF) method proposed by Martin (1990) which consists in moderate but far spread phytoplankton blooms before falling into the ocean or onto the vegetation, where they will have a CDR cooling effect like the Ocean Iron Fertilization (OIF) method proposed by Martin (1990) which consists in moderate but far spread phytoplankton blooms before falling into the ocean or onto the vegetation, where they will have a CDR cooling effect like the Ocean Iron Fertilization (OIF) method proposed by Martin (1990) which consists in moderate but far spread phytoplankton blooms before falling into the ocean or onto the vegetation, where they will have a CDR cooling effect like the Ocean Iron Fertilization (OIF) method proposed by Martin (1990) which consists in moderate but far spread phytoplankton blooms before falling into the ocean or onto the vegetation, where they will have a CDR cooling effect like the Ocean Iron Fertilization (OIF) method proposed by Martin (1990) which consists in moderate...