Redox-Milieu-Detektorband (RMD) und Textil-Passivsammler (TPS) zur Ortung der Phasengrenzschicht zwischen oxischer und anoxischer Phase (PGS) in Aquiferen und Sedimenten und Quantifizierung chemisch-biologischer Prozesse in der PGS

gM-Ingenieurbüro, Tannenweg 2, 35274 Kirchhain, oeste@gm-ingenieurbuero.com, www.gm-ingenieurbuero.com

Abbildung 1: Fossile PGS-Abbildung als parallel verlaufende Eisen(III)- und Mangan(IV)ausfällung durch das Sediment eines oligozänen Meeressandes.

Fundort: Sandgrube Rockenberg.

Abbildung 3: Fossile PGS-Abbildung auf einem ursprünglich annähernd eirunden Quarzitgeröll. Auf der Geröll-Unterseite ist anoxisches Milieu durch die ockerfarbigen Ausnehmungen dokumentiert; Auf der Gerölloberseite ist mindestens suboxisches Milieu durch Kiesel-Ausscheidung dokumentiert. Fundort: Steinberg bei Münzenberg.

Abbildung 2: Fossile PGS-Abbildung, als parallel verlaufende Eisen(III)- und Mangan(IV)ausfällung über einer Baryt-Konkretion im Sediment eines oligozänen Meeressandes. Der im Bereich der Eisen(III)oxidhydrat-Ausfällung weggelöste Baryt zeigt an, dass dort anoxisches sulfatreduzierendes Milieu herrschte. Fundort: Sandgrube Rockenberg.

Abbildung 4: Rezente PGS-Abbildung zwischen oxischem und anoxischem Porengrundwasserleiter auf einem RMD-C nach einem Monat Detektionsdauer im Grundwasserleiter aus glazialen Sanden und Schottern in der Lahnaue. Die PGS bildete sich durch reduktionsmittelhaltige Sickerwassereinträge aus einer Altdeponie.

Vertikalabstand zur Rohroberkante Grundwassermessstellte

3,11 m	-	5,05 m	oxisch	RMZ 1
5,05 m	-	5,18 m	suboxisch	RMZ 2
5,18 m	-	5,28 m	suboxisch	RMZ 3
5,28 m	-	11,28 m	anoxisch	RMZ 4

Formelschema 1: SiO₂-Freisetzung aus schwefelhaltigen Si-Huminsäurekomplexen bei pE 0.

Formelschema 2: SiO₂-Freisetzung aus schwefelfreien Si-Huminsäurekomplexen bei pE > 0

Formelschema 3: Chlorradikal-Bildung im oxischen Milieu in der Gegenwart von Huminsäure und gelöstem Eisen

٠Cl

CI

Tabelle 1: Mit Redox-Milieu-Detektorbändern (RMD) unmittelbar und visuell nachweisbare Redox-Milieuzonen (RMZ) in der Phasengrenzschicht (PGS). Die für die Untersuchungen mit den RMD in Lösung oder als Ausfällung bedeutsamen redox-sensitiven Elemente sind farbig hervorgehoben. In den Veröffentlichungen von gM-Ingenieurbüro wird als Bezeichnung für die RMZ die farbig hervorgehobene Nummerierung der RMZ nach dem Mineralstabilitätsbereich verwendet.

Für die Redo-Milieu-Zonen (RMZ) in der Literatur gebräuchliche Bezeichnungen							In Lösung stabil Ungelöst als Mineralausfä					
zum Beispiel Sigg & Stumm 1994 und Rickhard & Luther 2007							14.0	c	To also	Mar ala	Cala	C ala
nach O₂-Gehalt	nach O ₂ -Gehalt und reduzierenden Eigenschaften	nach Mineralsta- bilitätsbereich nach Redox- potential EH, Vol		nach Redox- potential EH, Volt	nach Elektronenak- tivität, pE-Wert	als Fe(II)	als Mn(II)	als S(VI)	Fe(III)-Oxid	Mn(IV)-Oxid	BaSO₄/ PbSO₄	Fe(II)sulfid
aerob oder oxisch	aerob	Mn(IV), Fe(III), S(VI)	1	> 0,6	> 10	-	-	+	+	+	+	-
anaerob suboxisch	Mangan(IV)-reduzierend	Fe(III), S(VI)	2	< 0,6 bis > 0	< 10 bis > 0	-	+	+	+	-	+	-
anaerob suboxisch	Eisen(III)-reduzierend	S(VI)	3	< 0 bis > -0,2	< 0 bis > -4	+	+	+	-	-	+	-
anaerob anoxisch	sulfatreduzierend bis	Fe(II)sulfid	4	< -0,2	< -4	-	+	-	-	-	-	+

R = Huminsäuresubstituent.

methanogen

Tabelle 2: Mit Redox-Milieu-Detektorbändern (RMD) und Textil-Passivsammlern (TPS) laboranalytisch nachweisbare Redox-Milieuzonen (RMZ) in der Phasengrenzschicht (PGS), zum Beispiel durch Nachweis von Si-Mobilisation und Schwefelaufnahme von Huminsäuren, von CKW, Nitroaromaten sowie deren Reaktionsprodukten.

Redox-Milieu-Zone (RMZ)			In Lösung stabil			stabil											
Mineralstabilitäts- bereich		Redox- potential EH, Volt	Elektronen- aktivität, pE-Wert	Si als thiolhalt. Si(IV)-Catechol- Komplex mit Huminsäure	Si als thiolfreier Si(IV)-Catechol- Komplex mit Huminsäure	SiO ₂ - "Korrosion" in der RMZ	Catechol	org. Thiol	Disulfid	Disulfid- Catechol*	Catechol- chin- hydron	1,2-Chinon	CKW	Nitro- aromaten	S als FeS₂	S als org. Disulfid- schwefel	S als Elementar- schwefel
Mn(IV), Fe(III), S(VI) Fe(III), S(VI) S(VI) Fe(II)sulfid	1 2 3 4	> 0,6 < 0,6 bis > 0 < 0 bis > -0,2 < -0,2	> 10 < 10 bis > 0 < 0 bis > -4 < -4	- - - +	- - + +	- - +/-** +	- - + +	- - - +	- - + -	- - + -	+ + - -	+ + -	+ + -	+ - -	- - + +	- - + -	- + -

*) Die Disulfid-Catechole entstehen als primäres Oxidationsprodukt in schwefelhaltigen Huminsäuren. Gemäß Formelschema 1 stehen sie im Gleichgewicht mit den korrespondierenden Thiolen der Catechol-Chinhydrone in den Huminsäuren

**) Nur die Catechole vermögen durch Komplexbildung mit Si die Auflösung kieselhaltiger Minerale auszulösen. Catechole thiolhaltiger Huminsäuren gehen bereits bei diesem Redoxpotential in Chinhydrone über, die keine Si-Komplexe bilden können